Применение методов искусственного интеллекта при обработке и интерпретации данных геофизических методов = Application of artificial intelligence methods in the processing and interpretation of geophysical methods data
Статья в журнале
Русский
550.3:004.8
10.21440/2307-2091-2022-1-86-101
геофизика; искусственный интеллект; трещиноватость; обработка; интерпретация
Relevance. Rock mass cracks are fracture surfaces in rocks with no signs of shifting. They significantly affect the physical and mechanical properties of rocks, and they, in turn, must be taken into account when planning mining operations and constructing mining structures. This problem can be solved by applying artificial intelligence (AI) methods, as they are able to process large amounts of data. The purpose of the work: choice of artificial intelligence method for detecting rock mass cracks from GPR data based on an analytical review of the applied artificial intelligence methods in the processing and interpretation of geophysical measurement data. Research methodology: analytical review of the application of artificial intelligence methods in the processing of geophysical methods data. The results of the work and their scope. As a result of the study, a table has been formed showing the qualitative assessments of the four characteristics of AI methods, which make it possible to make a reasonable choice of a method for detecting rock mass cracks from GPR data. The resulting estimates of the characteristics of AI methods will be useful to a wide range of geophysicists involved in data processing and interpretation and those who want to improve the efficiency of their work. Conclusions. The review showed that artificial intelligence methods are widely used in the processing of geophysical methods data. Among the methods used, one can single out artificial neural networks, support and relevance vector machines, genetic algorithms, etc. A convolutional neural network was chosen as an artificial intelligence method for detecting rock mass cracks from GPR data, since it is most sensitive to that data type and has a high noise immunity.
Шамаев, С. Д. Применение методов искусственного интеллекта при обработке и интерпретации данных геофизических методов / С. Д. Шамаев ; Институт горного дела Севера им. Н. В. Черского // Известия Уральского государственного горного университета. - 2022, N 1 (65). - С. 86-101. - DOI: 10.21440/2307-2091-2022-1-86-101
DOI: 10.21440/2307-2091-2022-1-86-101
- Общий отдел > Информационные технологии. Вычислительная техника,
- Математика. Естественные науки > Геология. Геологические и геофизические науки,
- НАУКА ЯКУТИИ > МАТЕМАТИКА. ЕСТЕСТВЕННЫЕ НАУКИ > Геология. Геологические и геофизические науки,
- НАУКА ЯКУТИИ > ОБЩИЙ ОТДЕЛ > Информационные технологии. Вычислительная техника.
Войдите в систему, чтобы открыть документ